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Abstract

It is well known that in the majority of cases the problem of preemptive task scheduling on
m parallel identical processors with the objective of minimizing makespan can be solved in
polynomial time. For example, for tree-like precedence constraints the algorithm of Muntz
and Coffman can be applied. In this paper, this problem is generalized to cover the case of
parallel processors which are available in certain time intervals only. It will be shown that this
problem becomes NP-hard in the strong sense in case of trees and identical processors. If tasks
form chains and are processed by identical processors with a staircase pattern of availability,
the problem can be solved in low-order polynomial time for C,,, criterion, and a linear
programming approach is required for L, criterion. Network flow and linear programming
approaches will be proposed for independent tasks scheduled on, respectively, uniform and
unrelated processors with arbitrary patterns of availability for schedule length and maximum
lateness criteria. © 2000 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

In the majority of the previous papers on scheduling it has been assumed that
processors are continuously available. In this work, we assume that processors are
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available only in some intervals of time, or time windows in other words. It is not
difficult to justify this assumption [1,9,17,18]. For example, in computer systems
some tasks are urgent real-time tasks which are prescheduled on processors and
executed in fixed time periods. Thus, free time intervals for lower priority tasks
are created. By the same token, tasks with higher priority may block the computer
system or part of it, and in this way create intervals of changing processor
availability. The load of multiuser computer systems changes during the day and
in the week. In big massively parallel systems it is convenient to change the
partition of the processors among different types of users according to their
‘presence’ on the machine. Fluctuations of the processing capacity can be modeled
by intervals of different processor availability. Other applications arise in the
context of manufacturing systems where certain dynamic activities (tasks) are
scheduled in the intervals of processor (machine) availabilities on a rolling horizon
basis. Some other reasons for non-availability periods follow maintenance re-
quirements or breakdowns. In this work, we analyze problems of preemptive
scheduling tasks on parallel processors available in certain intervals only. Before
doing this and presenting related results we will set up the problem more formally

(cf. [3]).

Let Z ={P |i=1,...,m} be the set of parallel processors, where by parallel we
mean that any task may be processed by any processor. Three types of parallel
processors are distinguished: identical, uniform, and unrelated, respectively, where
uniform processors differ in their speeds b;’s. Now let 7 = {T; | j = 1,...,n} denote
the set of rasks. Task T; € 7 has processing requirement of p; time units in case of
identical processors, whereas in case of uniform processors the processing time of
task 7; on processor P is p;/b;, where p; is measured on a standard processor with
speed equal to 1. In case of unrelated processors p;; denotes processing time of task 7}
on P. Task 7} is also characterized by its ready time r; and due-date d;. Among the
tasks precedence constraints are defined, and in this paper trees, chalns and empty
precedence constraints are analyzed.

Processors are available in ¢ different time intervals. Let 0<¢ <
L <--<t<---<t, be the points in time where the availability of processors
changes We w111 denote by m'” the number of identical processors available in in-
terval [t;,¢,,,) with m") > 0. Following [15,17] we will consider the following patterns
of processor availability:

1. If all processors are continuously available the pattern is called constant.

2. If there are only k or k — 1 processors available in each interval the pattern is
called zig-zag.

3. A pattern is called increasing (decreasing) if for all /=1,...,q—-1:
m? > max; <, {m"} (MY < min; ., ; {m"}), i.e., the number of proces-
sors available in interval [¢,_1, ;) is not more (not less) than the number in interval
[t tis1).

4. A pattern is called staircase if for all intervals the availability of processor P; im-
plies the availability of processor P,_;. A staircase pattern is shown in Fig. 1 where
the shaded areas represent intervals of non-availability; patterns 1-3 are special
cases of 4.
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Fig. 1. A staircase pattern of processors availability.

In the paper, optimal preemptive schedules are looked for. The optimality criteria
we consider are: schedule length (makespan) Cn. = maxzcs{c;}, and maximum
lateness Ly, = maxr.cs{c; —d;}. where ¢; is the time at which task 7; is finished.

To denote our scheduling problem we will use the standard three-field notation [7]
with some extensions in the processor field to denote changing patterns of processor
availability. These extensions, placed after symbols denoting the type and the
number of processors, are as follows: NC,,,, zig-zag, increasing (decreasing), in-
creasing zig-zag (decreasing zig-zag), staircase and they denote, respectively, arbi-
trary, zig-zag, increasing (decreasing), increasing (decreasing) zig-zag and staircase
patterns of availability. (In the context of flow shop scheduling, symbol /; denoting
numbers of non-availability intervals on particular machines, has been also used
[10].)

Preemptive scheduling on parallel processors, as a classical scheduling problem,
was analyzed in various settings. Ullman [19] was the first to study this problem from
the complexity point of view, proving its strong NP-hardness for precedence con-
straints and an arbitrary number of identical, continuously available processors.
Some easy cases include: tree-like precedence constrained tasks scheduled on
identical processors or arbitrary graphs scheduled on two processors [16] and
independent tasks scheduled on uniform [8] or unrelated [2,12] processors.
Processors with non-availability intervals have been studied in [1,4,15,17,18].
In [4] the following problems have been analyzed: P,decreasing zig-zag|p;, = 1,
outforest|Cpay, P,increasing zig-zag|p; = 1,inforest|Cpay, Pm, NC\,|pmin, tree|Cpx
and P2, NC,;,|pmtn, prec,r;|Cn,c. Schmidt [18] demonstrated that a feasible pre-
emptive schedule exists iff

n k
- Z,-:1 pj Zj:l pj <1
Zi:l PC; Z;‘:l PC;

where py = p>» = -+ = p, for P, staircase|pmtn|Cy,,x and the assumed processor ca-
pacities PC; > PC, > --- = PC,,, where PC; is the total processing capacity of pro-
cessor P for a given time horizon. Such a schedule can be constructed in
O(n + mlogm) time with the number of preemptions being proportional to the
number of intervals of availability. Liu and Sanlaville [15] studied various other
patterns of processor availability which they called profiles. They proved that the
following problems can be solved in polynomial time: P, NC,;,|p; = 1, chains|Cpyy,
P2,NC\;,|p; = 1,prec|Cpax, P,decreasing zig-zag|pmin, outforest|Cyax, P,increasing
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zig-zag|pmtn, inforest|Cyyx, P,NC,,|pmin, chains|Cp,y, P2,NC,;,|pmin, prec|Cpa, P,
increasing zig-zag|p; = 1, inforest|Ly,x, P2,NC\|p; = 1, prec|Lm.x, P,increasing zig-
zag|pmin, inforest|Luyax, P2, NC,,|pmtn, prec|Ly.x.

In [1] the problem has been studied in a context of multiprocessor tasks.

In [10,13] problems of scheduling on dedicated processors with non-availability
intervals have been analyzed.

The rest of this work is organized as follows. In Section 2 it will be shown that the
problem with a staircase pattern of availability is NP-hard in the strong sense for
intrees. The case of chains is considered in Section 3. In the case of identical pro-
cessors with a staircase pattern of availability, the problem can be solved in low-
order polynomial time for Cp,, criterion and a linear programming approach is
required for L, criterion. On the other hand, unrelated processors result in strong
NP-hardness of the problem, even in case of two processors. In Section 4 network
flow and linear programming approaches will be proposed for independent tasks
scheduled on, respectively, uniform and unrelated processors with arbitrary patterns
of availability for schedule length and maximum lateness criteria.

2. Trees and staircase pattern

Let us first consider the case of a constant pattern. The problem can be solved by
the algorithm of Muntz and Coffman [16]. The algorithm has time complexity of
O(n*) and generates O(mn) preemptions.

Now let us assume we have intervals of non-availability and the pattern is a
staircase. Unfortunately, this problem in the case of intrees can be shown to be NP-
hard in the strong sense.

Theorem 1. P, staircase|pmin, intree|Cy,x is NP-hard in the strong sense.

Proof. The transformation is from 3-partition [6]. Assume the following instance in
this problem:

A set 4 of 3s positive integers {aj,a,...,as}, and an integer bound B such that

Bld<a <BJ2; i'=1;2 38

Can A4 be partitioned into s disjoint subsets 41, 4,, ..., 4,, such that Za,e 4,0 =B

for j=1,...,5?

Define the following instance of the non-availability with trees (NAT) problem
for the above 3-partition instance:

tree i fora;, i=1,...,3s

leaves of i, |L;| = Wa;, where W = 3s + 1

stem of 7, |S;| = wa;, where w = 3s

all jobs have unit processing time (see Fig. 2)

processor system as shown in Fig. 3 with m = WB processors

C* = swB + s — schedule length

Does there exist a schedule of length C*?
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Fig. 2. Tree i for a;.

1 wB 1 wB 1 1 wB
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0 C*=swB+s

Fig. 3. Processor availability pattern.

= Given 3-partition of / one can easily obtain a feasible schedule with C,,x = C*

(cf. Fig. 3). We will omit details.
< Let S be a feasible schedule of length C*. We will show how to obtain a

3-partition of /. Consider set
A, = {all leaves either completed or preempted at wy = (s — 1)wB + s}.

Since there is no idle time in S$*, we have
|As| = WB — 3s. (1)

(From definition 4, contains only leaves. 3s is the maximum number of stems.
Each task can be processed by at most one machine at a time. Since there is no idle
time in S* each of WB machines must process any task immediately before w,. At
most 3s of these tasks come from stems, so remaining are at least WB — 3s tasks
which must be leaves.)

Furthermore, without loss of generality we have

LAJL N4,) (2)

=il
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for some £ > 1. First, we prove that k£ = 3. The proof is by contradiction. Suppose
k > 3, then B < Zk , a; and the stems of trees 1, ...,k could not be completed by C*.
Now suppose & < 3, then by (1) and (2) we have

k k
WB — 3s<|A1_Z|LnA\ SILl=W> ai<WB—W
i=1

i=1 i=1

and we get a contradiction since W = 3s + 1.
Thus k = 3, and

OL N4,) (3)

i=1
We now show that a, +a>, + a3 = B.
Again by contradiction, suppose a; + @ + a; < B, then by (1) and (3)

3 3 3
WB—3s< |4 =) ILiNA| <> |LI=W) a,<WB-W,

i=1

which is a contradiction since W = 3s + 1.
Now suppose that a; + a; + a3 > B. Then the stems of the trees could not be
completed by C*. Thus,

a; + a» +a; = B. (4)
By (4) processor 1 processes jobs from S, U S, U S; only between w, and C*, therefore
A, = {all leaves either completed or preempted in w, = (s — 1)wB + s — 1, w]}.

To finish the proof it remains to show that only the leaves from L; UL, UL; are
processed on all processors in interval ;. Actually, this may not hold for any fea-
sible schedule with C* (S* in particular) then, however, we show how to convert S*
into a schedule for which this condition is met.

Consider set

A, = {all leaves either completed or preempted at w;_,
=(s—2)wB+s—1}\ 4,.

Without loss of generality, we have
k

A = JLin4). (5)
=4
Using similar arguments as above for 4; we can show that k£ = 6, and
as+as+ag<B (6)
and
Ay = {all leaves either completed or preempted in

Wy =[(s =2)wB+s5—2,w,_1]} \ 4. (7)
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Notice that there can be at most 3(s — 1) stems processed in parallel in w;. Without
loss of generality we may assume that the leaves from L, U L, U L5 are processed only
in w; and w, in §*. However, since (6) and (7) hold, we can remove all stems from
w, if there are any, and replace them by the leaves from L; U L, U L;. Thus, without
loss of generality, S* has only jobs from |(J_,L;UlJ_,S in interval
[((s— DwB+ (s—1),C"], and a; +a>» + a3 =B. Thus, we can ‘cut off interval
[((s—1)wB+(s—1),C"] from S$* and continue by repeating the above argu-
ments. [

3. Chains and staircase pattern
3.1. Minimizing maximum makespan — P, staircase|chains, pmtn|Cyax

Now let us assume we have processors with intervals of non-availability and tasks
form N chains J,,J5,...,Jy, N <n. In [15] it has been suggested to apply the algo-
rithm of Muntz and Coffman [16] to change a task assignment if one of the following
events occurs:

1. an assigned task is completed,

2. the priority of a task has changed, or

3. the availability of a processor has changed.

This approach results in O(nlogn + nm) time complexity and in a number of pre-
emptions generated being O((n + m)z — nm). Below we will show how one can im-
prove this result. First, let us prove the following theorem.

Theorem 2. Preemptive scheduling of chains (on processors with limited availability)
for minimizing schedule length can be solved by applying an algorithm for independent
tasks.

Proof. Each chain J; will be represented by an independent task 7;. The processing
time p;, of T, equals the sum of the processing times of all tasks 7, of Jj, i.e.,
p; = Y. p;. Now, assume a feasible schedule is generated for the independent tasks
problem. We will show that this schedule represents also a feasible schedule for
chains. As each chain refers to an independent task, it is scheduled with all its
processing requirements and it is never assigned at the same time to more than one
processor. It remains to show that an optimal independent tasks schedule with length
Cuax(in) is also an optimal chain schedule with length Cha(ch) with
Crax(in) = Crax(ch). Assume there is an algorithm which generates a schedule
Ciax (ch) < Cmax(ch) for the chain problem. As independent tasks can be regarded as
chains where each chain consists only of a single task, this algorithm could have been
applied also to the independent tasks problem. Then it would have generated also a
schedule Cpy(in)' < Crma(in); a contradiction. O
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Thus, we have the following corollary.

Corollary 1. Preemptive scheduling of N chains on m identical processors with stair-
case pattern of availability can be solved in O(N + mlogm) time by applying the al-
gorithm by Schmidt [18]. The number of induced preemptions is at most g — 1 where g
is the total number of intervals of availability of all processors.

Unfortunately, a more complicated approach involving linear programming is
required in case of Ly, criterion. The method is described in the next section.

3.2. Minimizing maximum lateness — P, NC.,;,|chains, pmtn, ;| Ly

In this section, we present a polynomial algorithm for solving the problem of
minimizing maximum lateness for chain precedence constraints between tasks, and
each task has a ready time. The algorithm uses binary search procedure to find an
interval [L',L"] that encloses the optimum value of L. In each such interval of
L.« values the sequence of events (i.e., ready times, due-dates, changes of processor
availability) is fixed, and there is a constant number of available processors. Thus a
linear programming problem may be applied to solve the problem. As a result, one
gets an answer whether or not L;  is located in the particular interval. Depending
on the answer again a binary search procedure is activated and so on. Since the general
procedure is well known, see e.g. [14], we focus here only on its crucial part, namely on
the linear programming formulation. This linear program is defined as follows:

L(j) is the number of tasks in chain J; (thus, n = Z VL)) pijs dy, 7y denote,
respectively, processing time, due-date and release date of T, i3 0= eo <e << e
is the list of different moments in {r;,d;:j=1,...,N, i=1,...,L()}
U{ti:1=1,...,q} p; = 3" p, is the processing time of chaln Jj;

i { 1 if e, is a due-date,
0 otherwise;

Di/' = {l AV < €1+ al—leux and e + ale ax S dl/ + Lmax};

R"./ = {l AV <er1 + a1 Lnax and e; + ajlmax < l",,}

D/ = {[ Lryy <et + a1 Lyax and e; + ajLiy, < dL(/ +Lmax}

yﬁ” is the part of chain J; processed in the interval [e; | + a; L, €/ + @Limax];

m'") is the number of processors available in [e/ | + @/ | Ly, € + @/ L)

i Ly ; (8)
y_;ngel_el—l+Lmax(al_al—l)7 j:lw--an l:1a~~~7K; (9)
Zy.;l)g(el_elfl +anx(a/_a/‘l))m”)7 I=1,...,K; (10)

J=1

K
Y y'=p, J=1.0N (11)
I=1
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ZY}HBZP:/, jZI,...,N, iZlﬂ"'vL(j); (12)
leD;; z=1

’ i—1
Yoy’ py i=1. L), j=1,...,N; (13)
I€R;; z=1
W=0, j=1,...,N, I¢Dj (14)
>0, j=1..N, I=1,. K; (15)
L' Ly <L (16)

Any schedule that satisfies (8)—(11), (14)-(16) is an optimal schedule for problem
P NC,;,|pmtn, r;|Ly,c With a considered interval of L, values, where we set r; := ry;,
d; == dy ;) ;» and p; = S_-V) p,; for job j in this new problem. Let S be such a schedule.
Consider job ; that starts at c¢g and completes at Cs in S. Let
foj=cs < fi; < -+ < fu;; = Cs be moments in schedule S such that exactly p;; units
of job j are processed in interval [fi ), f;], i=1,...,L(j). If S meets (12), then
fii<dj+ L, for i=1,...,L(j). If S meets (13), then f_,; = r;, i=1,...,L(j).
Consequently, if S meets both (12) and (13), then interval [f;_, ;, f;;] falls inside of
interval [ry;,d;; + L] for i = 1,...,L(j). Therefore, by replacing the part of job j
done in [f;_;,,f;] in S by the ith task of chain J;, we get an optimal schedule for
P,NC,,|chains, pmtn, r;|Lin,y in the considered interval of L., values.

Changing L., may cause changes of the sequence of moments e; when some
d; + Ln., becomes equal to, respectively, some release date, starting or ending point
of any interval of non-availability. There are at most (n + ¢)n different intervals
[L',L"] for Ly, in which the sequence of ¢; does not change. Applying binary search
procedure we must solve the linear program given by (8)—(16) O(logn + logg) times.

In the next section, we will show that this approach cannot be generalized to cover
the case of unrelated processors because the problem starts to be strongly NP-hard.

3.3. Chains and unrelated processors — R2|pmtn, chain|Cy,y

In this section, we show that the case of unrelated processors and precedence
constraints is strongly NP-hard even for chains and continuously available proces-
sors. This result sets a limit on polynomial time solvability (unless P = NP) of pre-
emptable scheduling problems with chains.

Theorem 3. Problem R2|pmin, chain|Cp,y is strongly NP-hard.

Proof. We prove strong NP-hardness of the problem by reduction from 3-partition.
The definition of 3-partition is given in the proof of Theorem 1. The instanice of
R2|pmtn, chain|C,, 1is constructed as follows:
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n = 8s;

p,=2B+1, ppy=Bforj=1,....,s
pi=B, py=2sB+1forj=s+1,..., 2s;
Pl =a; o, pryy=2sB+1for j=2s+1,... 5
p=2B+1, pyy=a; s, for j=5s+1,...,8s.

Tasks form 1 + 3s chains:

N <L < =T < Ty < <Dy
T, < T3 for j=2s+1,...,5s.

We ask whether a schedule of length C* = 2sB exists.

Suppose the answer to 3-partition is positive. Then a feasible schedule is presented
in Fig. 4. Conversely, let us assume that a feasible schedule of length at most 2sB
exists. Observe that due to the selection of the processing times and the schedule
length tasks are practically preallocated to processors. For example 7; must be ex-
ecuted on P, T;,; on Py, 5,1 on P, etc. Otherwise no schedule of length at most 2sB
would exist. Hence, tasks 7} < T,.; < ---T; < T;;--- < T», must be executed con-
secutively alternating the processors. This creates free intervals of length B on
processors Pj, P, alternatingly. The feasible schedule admits no idle times. Consider
the first free intervals [0, B] on P and interval [B, 2B] on P;. Before their starting, the
tasks in interval [B, 2B] must have their predecessors completed. Since no idle time is
allowed the sum of processing times in interval [0,B] on P, must be B. As
B/4 < a; < B/2, at most three tasks can be completed in [0, B] on P;. Their pro-
cessing requirement can be at most B. Suppose processing time of the tasks com-
pleted in interval [0, B] is less than B. To avoid idle time more than three tasks can be
started on P, in [0, B], but cannot be finished. Then, also successors of the tasks
completed in [0, B] on P, have smaller total processing time on P, in [B,2B], and an
idle time appears. We conclude that tasks completed in [0, B] must have processing
time also at least B. Hence exactly three tasks of length B must be completed in [0, B]
on P;. The same applies to their successors in [B,2B] on P». The elements of set 4 in
3-partition corresponding to the three tasks in [0, B] form set 4;. Analogous rea-
soning can be applied to intervals [2Bi,2Bi + B] on P, and [2Bi + B,2B(i + 1)] where
i=0,...,5s — 1. This completes the proof. [

T Bst1| B2 |Bst3 5 Rerd| Bet5 | Rt
Ber1 |Bs2 B3l B Bis+d| Bst5 | Bst6 e e B
B 2B 3B 4B 2sB-B 2sB

Fig. 4. lllustration to the proof of Theorem 3.
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4. Independent tasks

In this section, we will consider independent tasks scheduled on, respectively,
uniform processors (Section 4.1) and unrelated processors (Section 4.2) with non-
availability intervals. In the first case, minimization of L, will be solved by a
combined strategy: binary search and network flow. In the second case, the network
flow approach will be replaced by the so-called two-phase method [3].

4.1. Uniform processors

The problem to be analyzed is Q, staircase|pmin,r;|L,,.. We assume that there
are k different processor types. Processors of type i have speed b; > by,
(i=1,...,k—1). A staircase pattern of processor availability is also assumed.
Processors are available in ¢ different intervals, interval / has m,‘.” 20 (= lys:usk)
processors of type i. Each task 7}, is also available for processing in some restricted
interval of time. This interval is determined by the task ready time ; and due-date d,
(task must not be executed after d; + Ly« which will be called 7;’s deadline). The
optimality criterion is maximum lateness.

The algorithm we propose for this problem is an extension of the technique
proposed in [5,11,20]. The problem is reduced to a sequence of the network flow
problems. We describe the construction of the network first. Then we consider the
complexity of this algorithm.

The network flow problem solves problem Q, staircase|pmin, r;, d;|—, i.e., it finds a
feasible schedule provided that one exists. In our case, a deadline should be calcu-
lated as d; + Ly, for task 7, and some trial value of the maximum lateness. The
network flow algorithm is used then to find the optimal value of the maximum
lateness. Suppose the test value of the maximum lateness is given and is equal to
L. This defines K = 2n + g events in the task and processor system. The events are
of the following type: ready time of some task, disappearing of some task 7; from the
system at time d; + Ly, a change of processor availability at some moment ¢,.
However, assuming fixed L., the sequence of the events is also fixed. Let e, be the
time instant at which the /th event takes place, and 1, = e,,| — ¢, the length of the /th
interval between two consecutive events.

The network G(V,A) (cf. Fig. 5) has a source node S;, and terminal node
S,. Between these two, two layers of nodes are inserted. The first layer consists
of n nodes 7, representing the tasks. The second layer has Kk nodes wy
i=1,....k, [ =1,...,K, representing different ranges of processor speeds in the
interval [e;, ¢;,1]. The source node S; is connected by an arc of capacity p; with the
node representing task 7;. The capacities of these arcs guarantee that no task receives
more processing than required. Nodes representing tasks which can be executed in
the interval [e;, e, ;] are connected with nodes wy; (i=1,...,k) by edges with
capacity (b; — b;.1)1;. These arcs guarantee that no task is processed on any
processor longer than possible in the interval of length 7,. Interval-speed range nodes
w;; are connected with the terminus S, by edges of capacity (b; — b;.1)7, Z;, m{).
The constraints imposed by the capacities of the arcs heading to and leaving nodes
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Fig. 5. Network for problem Q, staircase|pmtn, r;|Ly,,.

w; can be understood as equivalent to the processing capacity constraints imposed in
[8] to solve problem Q|pmtn|Cy.x. The maximum flow can be found in O((n + ¢)*)
time. When the edges joining the source with the task nodes are saturated, then a
feasible schedule exists.

The schedule can be constructed on an interval by interval basis. A partial
schedule in the interval can be built using the algorithm proposed in [8]. Note that
processing capacity constraints imposed in the above paper are fulfilled: it is required
there that the longest task should not be longer than the processing capacity of the
fastest processor. Here, no task receives more processing in any interval than the
capacity of the fastest processor. In [8], it is required that the two longest tasks
should not have bigger total processing time than the processing capacity of the two
fastest processors. Here, no pair of tasks receives more processing in any interval
than the capacity of the two fastest processors. Moreover, in the approach men-
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tioned above, it is required that the three, four, etc., longest tasks should not have
bigger total processing time than the processing capacity of the three, four, etc.,
fastest processors. Here, no three, four, etc., tasks receive more processing in any
interval than the capacity of the three, four, etc., fastest processors. More generally,
the j longest tasks do not consume more processing time than provided by the
J fastest processors in interval /, for j = 1,...,2{‘ lm . Finally, total processing
requirement assigned to any interval does not exceed processing capacity in the in-
terval due to the capacity constraints on the arcs leaving nodes w;; (i = 1,... k).

Now, let us analyze the algorithm finding the optimum value of the maximum
lateness L; .. With changing value of L, the sequence of events in the system
changes when for some pair of tasks 7;, 7; r; = d; + Ly.x. Changing L., beyond such
a value decides whether the pair of tasks can be executed together. The sequence also
changes with L, when for some task 7} its deadline d; + L.« passes from one in-
terval of processor availability to another. This determines whether a task can be
executed on some set of processors or not. Hence, there are O(n(n + ¢)) intervals of
L.« where the sequence of events is constant. The network flow algorithm must be
called O(logn + logg) times in a binary search fashion to determine the interval
containing L; .. Next, the number o of additional calls to the network flow algo-
rithm can be bounded in a way which bears some similarity to the method proposed
in 11,20. Yet, due to a different structure of the network and unequal speeds at the
processors these results are not immediately applicable here.

Note that after fixing the sequence of the events, the structure of network G also
remains fixed, only the values of arc capacities change. Suppose that we already fixed
the sequence of events, and L) is the biggest value of the maximum lateness con-
51dered in the previous binary search, for which a feasible solution does not exist. For

L, the maximum flow in G is ¢, < ¢ = Y, p;, where ¢ is the desired value of
flow. Now we can find the cut, i.e., the set of arcs with minimum capacity which is
bounding the maximum flow. Let us denote by », the number of tasks whose pro-
cessing requirements were not satisfied and which can be processed in interval
[eh e/qi

With increasing of L! by 9, the processing capacity of all arcs (w;,S,)
(i=1,...,k) for some interval [e, e, ] increases by o Zle (m::"bi). Hence,
the maximum possible increase of the capacity in the cut is 655, S° (m"b)).
However, this increase is possible only if in each interval [e;, e,. ] the number of tasks
which can exploit this increase is sufficiently big. Strictly saying, n, > Zle m". On
the other hand, task 7; which processing requirement is not satisfied can forward
additional flow to all the speed ranges of interval / via all arcs (7}, w.;). Consuming at
most b}, units of the flow, where &), is the speed of the fth fastest processor in
interval /. Hence, the minimum increase of the cut capacity is dmin; ;< x{b;}.
Furthermore, 2,3....,; tasks whose processing requirement is not satisfied
can forward up to ¢ Z b, units of the flow. In such a case, interval /
increases the cut capacity by 52 b},. The actual increase is u'o where u' is
an integer multiplier satisfying mml Jex{b <t < SR S (m!"by), and re-
flecting which tasks can be executed in which interval, which intervals increase their
capacity when L, increases, and which of these combinations have arcs in the cut.
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Weset 6 = (¢ — ¢)/u', L2, == L. . + 9, and calculate the maximum flow ¢, by the
same method (only with capacities changed). If ¢ # ¢, we repeat the procedure by
calculating L&} = L8 + (¢ — ¢,)/uf for g =1,...,0 until we get ¢ = ¢,.

Let us analyze the number of iterations that will be performed in the worst case.
The problem is to use a right value of the multiplier x4, i.e., to find the extension of
L.x which gives an exact value of the optimum maximum lateness. The extension of
maximum lateness calculated for some value ¢ of the multiplier increases the flow to
at least ¢ for all cuts with multipliers greater than p¢. By binary search over
ZLI Zf.;l(m,mb[) (integer) values of multipliers one can find the right extension,
i.e., the required multiplier of the cut, at which the L is attained. Thus, the number
o of additional calls to the network flow algorithm is O(logn + logg + logm
+ log max{h;}), and total algorithm complexity is O((n+ ¢)’(logn + logq

+ logm + log max{b;})).

4.2. Unrelated processors

In this section, we consider parallel unrelated processors with an arbitrary number
of non-availability intervals on each of them. The intervals do not form any par-
ticular profile of processor availability. First, we will solve the problem
R, NC,;,|pmtn|Cp.x. This problem can be solved by a slight modification of the two-
phase method [3]. In the first phase, a linear programming problem is solved and we
use basically the same denotation as in Section 3.2 but now we have independent
tasks and unrelated processors so p;; denotes the processing time of task 7; on
processor P.. We may also assume that the moments when availability of processors
changes (#,?,...,4,) are the same as boundaries of intervals in the schedule
(eo,e1, ..., ex), except for the last one, and we have ex = Cp,x and K = g + 1. Other
denotations are as follows:

x,@j{’ is the part of task 7; processed on processor P, in the interval [e¢;, 1, ¢], and
ol ML I=1.3 o g = Lleos g 1=T1,8 . K,
xf-;’ = 0 for all / for which processor P; is non-available in the interval [e; |, ¢,].

Now, we have the following LP problem:

minCizsz (17)
subject to

Zp{/xff,{)<€/—e‘/-1, jzla“"n’ I=1,...,K; (18)

=1

Zp[jx,s/{)ge,—e,,,, i=1,....m, I=1,...,K; (19)

=

K
Zx://):17 JZI,,n (20)
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Inequalities (18) guarantee that the sum of parts of any task processed in a given
interval on all processors does not exceed the length of this interval. Similarly, in-
equalities (19) guarantee that the sum of parts of all tasks processed on any processor
in a given interval is not greater than the length of the interval. Eq. (20) ensure that
all tasks are fully executed.

After applying the first phase one gets an optimal assignment of tasks to intervals
le/-1,e)], 1 =1,...,K. Notice that an order of task parts produced by the first phase
does not necessarily constitute a feasible schedule because parts of the same task may
overlap. To obtain a feasible solution one must shift task parts within each interval
to eliminate cases of overlapped processing of parts of the same task. In the second
phase, this problem is solved separately for each interval. We do not present this
method here and refer the interested reader to [3].

Now, we will show how a similar approach may be applied to problem
R,NC,;,|pmtn, r;|Ly.. The problem can be solved by an iterative method which is a
combination of a binary search procedure and the two-phase method. Changing L.,
may cause changes of a sequence of moments e, when some d; + L.« becomes equal
to, respectively, some release date, starting or ending point of any non-availability
interval. There are at most (n + ¢)n intervals [L', L"] of L.« value where the sequence
of e,’s does not change. The binary search procedure is used to find an interval of
L.« values containing an optimal value of this criterion. In each stage of this pro-
cedure only the first stage of the two-phase method is applied. Basically, we will use
the same denotation as for problem R, NC,;,|pmtn|Cy,,, with additional items:

" { 1 if e is a due-date
"7 10 otherwise,

A/‘ = {1 tei + a1 Lax = v and e; + 1Lmax < dj +Lmax}7

Bl = {] te— + al—leax = vy and e + aILmax g dj +Lmax}a

Now, we have the following set of LP problems:

min L., (21)
subject to

Zp,fxﬁf)ée/—e,_l + Lna(a—air), j=1,...,n, 1 €4;\ {0} (22)

=1

Zp,-/xg)ge,—e/,|+Lm.‘“(a,—a,4), i=1,....m [=1,...,K,; (23)

JEB;

L' € Ly € L' (24)

Z Z x{f?:l, Ji=1 et (25)

i=1 le4;\(0}

In the above formulation, inequalities (22) and (23) guarantee that the sum of task
parts processed in each interval does not exceed its length. Inequality (24) ensures
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that the sequence of moments ¢; does not change. Inequality (25) guarantees that all
tasks are fully executed.
Next, the binary search procedure is applied for finding a proper interval [Z', L"].
The second phase of the two-phase method is applied in the last stage of the
binary search procedure and gives an optimal schedule which minimizes maximum
lateness.

5. Conclusions

In this paper, we have analyzed problems of scheduling preemptable tasks on
parallel processors with non-availability periods. It has been shown that such a
problem is strongly NP-hard in case of intree precedence constraints, identical
processors and the makespan criterion. On the other hand, the problem with chain-
like precedence constraints can be solved by the algorithm developed for indepen-
dent tasks. On the other hand, a polynomial time algorithm based on linear pro-
gramming has been proposed for the maximum lateness criterion. Moreover,
algorithms based on network flows and the two-phase method have been proposed
for problems with independent tasks scheduled on, respectively, uniform and unre-
lated processors subject to Cpux and Ly, criteria.
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